A chromoplast-specific carotenoid biosynthesis pathway is revealed by cloning of the tomato white-flower locus.

نویسندگان

  • Navot Galpaz
  • Gil Ronen
  • Zehava Khalfa
  • Dani Zamir
  • Joseph Hirschberg
چکیده

Carotenoids and their oxygenated derivatives xanthophylls play essential roles in the pigmentation of flowers and fruits. Wild-type tomato (Solanum lycopersicum) flowers are intensely yellow due to accumulation of the xanthophylls neoxanthin and violaxanthin. To study the regulation of xanthophyll biosynthesis, we analyzed the mutant white-flower (wf). It was found that the recessive wf phenotype is caused by mutations in a flower-specific beta-ring carotene hyroxylase gene (CrtR-b2). Two deletions and one exon-skipping mutation in different CrtR-b2 wf alleles abolish carotenoid biosynthesis in flowers but not leaves, where the homologous CrtR-b1 is constitutively expressed. A second beta-carotene hydroxylase enzyme as well as flower- and fruit-specific geranylgeranyl diphosphate synthase, phytoene synthase, and lycopene beta-cyclase together define a carotenoid biosynthesis pathway active in chromoplasts only, underscoring the crucial role of gene duplication in specialized plant metabolic pathways. We hypothesize that this pathway in tomato was initially selected during evolution to enhance flower coloration and only later recruited to enhance fruit pigmentation. The elimination of beta-carotene hydroxylation in wf petals results in an 80% reduction in total carotenoid concentration, possibly caused by the inability of petals to store high concentrations of carotenoids other than xanthophylls and by degradation of beta-carotene, which accumulates as a result of the wf mutation but is not due to altered expression of genes in the biosynthetic pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of carotenoid biosynthesis during tomato development.

Phytoene synthase (Psy) and phytoene desaturase (Pds) are the first dedicated enzymes of the plant carotenoid biosynthesis pathway. We report here the organ-specific and temporal expression of PDS and PSY in tomato plants. Light increases the carotenoid content of seedlings but has little effect on PDS and PSY expression. Expression of both genes is induced in seedlings of the phytoene-accumula...

متن کامل

Cloning of tangerine from Tomato Reveals a Carotenoid Isomerase Essential for the Production of -Carotene and Xanthophylls in Plants

Carotenoid biosynthesis in plants has been described at the molecular level for most of the biochemical steps in the pathway. However, the cis-trans isomerization of carotenoids, which is known to occur in vivo, has remained a mystery since its discovery five decades ago. To elucidate the molecular mechanism of carotenoid isomerization, we have taken a genetic map-based approach to clone the ta...

متن کامل

Epistasis in tomato color mutations involves regulation of phytoene synthase 1 expression by cis-carotenoids.

Tomato (Solanum lycopersicum) fruit accumulate the red carotenoid pigment lycopene. The recessive mutation yellow-flesh (locus r) in tomato eliminates fruit carotenoids by disrupting the activity of the fruit-specific phytoene synthase (PSY1), the first committed step in the carotenoid biosynthesis pathway. Fruits of the recessive mutation tangerine (t) appear orange due to accumulation of 7,9,...

متن کامل

Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of beta-carotene and xanthophylls in plants.

Carotenoid biosynthesis in plants has been described at the molecular level for most of the biochemical steps in the pathway. However, the cis-trans isomerization of carotenoids, which is known to occur in vivo, has remained a mystery since its discovery five decades ago. To elucidate the molecular mechanism of carotenoid isomerization, we have taken a genetic map-based approach to clone the ta...

متن کامل

Tomato and Tobacco Phytoene Desaturase Gene Silencing by Virus-Induced Gene Silencing (VIGS) Technique

Background and Aims: Virus-Induced Gene Silencing (VIGS) is a virus vector technology that exploits antiviral defense mechanism. By infecting plants with recombinant viruses containing host genes inserted in the viral genome, VIGS achieves the RNA silencing process. The purpose of this study was to investigate the possibility of tomato (Lycopersicon esculentum Mill.) and tobacco (Nicotiana be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 18 8  شماره 

صفحات  -

تاریخ انتشار 2006